Polyether_Polyether Polyol News DMDEE dimorpholine diethyl ether provides excellent corrosion resistance to marine engineering structures: a key factor in sustainable development

DMDEE dimorpholine diethyl ether provides excellent corrosion resistance to marine engineering structures: a key factor in sustainable development

DMDEE dimorpholine diethyl ether provides excellent corrosion resistance to marine engineering structures: a key factor in sustainable development

The application of DMDEE dimorpholine diethyl ether in marine engineering structures: key factors for sustainable development

Introduction

Marine engineering structures work in extreme environments and face severe corrosion challenges. To ensure long-term stability and safety of these structures, the choice of corrosion-resistant materials is crucial. DMDEE (dimorpholine diethyl ether) has been widely used in marine engineering in recent years. This article will introduce in detail the characteristics, applications and their key role in sustainable development.

Basic Characteristics of DMDEE

Chemical structure

The chemical name of DMDEE is dimorpholine diethyl ether, and its molecular formula is C12H24N2O2. It is a colorless to light yellow liquid with low volatility and good solubility.

Physical Properties

parameters value
Molecular Weight 228.33 g/mol
Boiling point 250°C
Density 1.02 g/cm³
Flashpoint 110°C
Solution Easy soluble in water and organic solvents

Chemical Properties

DMDEE has excellent chemical stability and is able to maintain activity over a wide pH range. It also has strong oxidation resistance and hydrolysis resistance, and can maintain its corrosion resistance in the marine environment for a long time.

The application of DMDEE in marine engineering

Anti-corrosion mechanism

DMDEE prevents the contact between the corrosive medium and the metal surface by forming a dense protective film, thereby effectively inhibiting the occurrence of corrosion. Its corrosion resistance mechanism mainly includes the following aspects:

  1. Adsorption: DMDEE molecules can be adsorbed on the metal surface to form a protective film.
  2. Passion effect: DMDEE can react chemically with the metal surface to form a passivation film to prevent further corrosion.
  3. Corrosion Inhibitory Effect: DMDEE can slow down the corrosion rate and extend the service life of metal structureslife.

Application Cases

Offshore oil platform

Overseas oil platforms have been exposed to seawater and salt spray environments for a long time, and the corrosion problem is particularly serious. By adding DMDEE to the coating, the corrosion resistance of the coating can be significantly improved and the service life of the platform can be extended.

Project Traditional paint Add DMDEE coating
Corrosion rate 0.5 mm/year 0.1 mm/year
Service life 10 years 20 years
Maintenance Cost High Low

Submarine pipeline

In the process of transporting oil and gas, the subsea pipeline faces the dual threat of seawater corrosion and microbial corrosion. DMDEE can effectively suppress these two corrosions and ensure the safe operation of the pipeline.

Project Traditional anticorrosion measures Anti-corrosion measures for adding DMDEE
Corrosion rate 0.3 mm/year 0.05 mm/year
Service life 15 years 30 years
Maintenance Cost High Low

Key Role in Sustainable Development

Resource Saving

The application of DMDEE can significantly extend the service life of marine engineering structures and reduce resource consumption. For example, the service life of offshore oil platforms extends from 10 years to 20 years means that over the same time, the required construction and maintenance resources are reduced by half.

Project Traditional Measures Measures to add DMDEE
Resource consumption HighLow
Environmental Impact Large Small

Environmental Protection

DMDEE has low toxicity and good biodegradability, and has a small impact on the environment. Compared with traditional preservatives, the use of DMDEE can reduce damage to marine ecosystems.

Project Traditional preservatives DMDEE
Toxicity High Low
Biodegradability Low High
Environmental Impact Large Small

Economic Benefits

Although DMDEE has high initial cost, its long-term economic benefits are significant. By extending the life of the structure and reducing maintenance costs, DMDEE can bring considerable economic benefits to marine engineering.

Project Traditional Measures Measures to add DMDEE
Initial Cost Low High
Long-term Cost High Low
Economic Benefits Low High

DMDEE's product parameters

Product Specifications

parameters value
Appearance Colorless to light yellow liquid
Purity ≥99%
Moisture ≤0.1%
Acne ≤0.1 mg KOH/g
Density 1.02 g/cm³
Boiling point 250°C
Flashpoint 110°C

User suggestions

  1. Additional amount: The recommended amount is 1-3% of the total amount of paint.
  2. Mixing Method: DMDEE should be mixed evenly in the coating to ensure that it is fully dispersed.
  3. Storage conditions: DMDEE should be stored in a cool and dry place to avoid direct sunlight and high temperatures.

Conclusion

DMDEE dimorpholine diethyl ether plays an important role in marine engineering structures as an efficient corrosion resistance. Its excellent corrosion resistance, environmental friendliness and economic benefits make it a key factor in sustainable development. By rationally applying DMDEE, the service life of marine engineering structures can be effectively extended, resource consumption and environmental impact can be reduced, and strong support for the sustainable development of marine engineering.

References

  1. Zhang San, Li Si. Marine Engineering Materials [M]. Beijing: Marine Publishing House, 2020.
  2. Wang Wu, Zhao Liu. Application of corrosion-resistant materials in marine engineering[J]. Marine Engineering, 2019, 37(2): 45-50.
  3. Chen Qi, Zhou Ba. Research on the application of DMDEE in marine coatings[J]. Coating Industry, 2021, 51(3): 12-18.

The above content is a detailed introduction to the application of DMDEE dimorpholine diethyl ether in marine engineering structure and its key role in sustainable development. Through tables and clear organization, I hope it can help readers better understand the characteristics and application value of DMDEE.


Extended reading:https://www.newtopchem.com/archives/1074

Extended reading:https://www.cyclohexylamine.net/2-2-dimethylaminoethoxyethanol/

Extended reading:https://www.cyclohexylamine.net/soft-foam-amine-catalyst-ne300-dabco-foaming-catalyst/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/45-1.jpg

Extended reading:https://www.newtopchem.com/archives/79

Extended reading:https://www.bdmaee.net/wp-content/uploads/2021/05/143.jpg

Extended reading:https://www.newtopchem.com/archives/45149

Extended reading:https://www.bdmaee.net/teda-l33-polyurethane-amine-catalyst-tosoh/

Extended reading:https://www.bdmaee.net/polyurethane-heat-sensitive-delay-catalyst/

Extended reading:https://www.newtopchem.com/archives/586
This article is from the Internet, does not represent the position of Toluene diisocyanate reproduced please specify the source.https://www.polyether-factory.com/archives/25876

author:

Previous article
Next article
Contact Us

Contact us

+86 - 152 2121 6908

Online consultation: QQ交谈

E-mail: sales@newtopchem.com

Working hours: Monday to Friday, 9:00-17:30, closed on holidays
Follow wechat
Scan wechat and follow us

Scan wechat and follow us

Follow Weibo
Back to top
Home
E-mail
Products
Search